
Sandpiper Reference Documentation
Introduction

About Sandpiper
Background
Basic Terms

Data & Object Models
Products & Product Data

Products
Product Data

Data Synchronization
Full Replacements
Partial Changes

Object Model
Persistent Objects
Reference Objects

Interaction Model
Actors
The Plan
Levels

Level 0
Level 1
Level 2
Level 3

Implementation
Granulation
Input Workflow

Classic PIM Input
Sandpiper-Aware PIM Input
Sandpiper-Capable PIM Input

Output Workflow
Classic PIM Output
Sandpiper-Aware PIM Output
Sandpiper-Capable PIM Output

Tips and Best Practices
UUIDs
Data Integrations



Glossary

Introduction

About Sandpiper
Sandpiper establishes a common, decentralized method to classify, distribute, and synchronize
product data between a canonical sender and a derivative receiver. To do this it defines, as
unambiguously as possible, both a model for interaction and shared vocabulary to describe the many
moving pieces involved.

Sandpiper tries to do this one thing well, and does not attempt to branch into other realms better
handled by dedicated tools.

Background
This is the reference documentation for v0.8 of the Sandpiper Framework, a cross-platform, open-
source product data synchronization initiative by members of the automotive aftermarket. Increasingly,
product data resides in more systems, is more difficult to update, is less verifiable, and requires
increasingly variable and proprietary methods to deliver.

The founding members of the team come from the automotive aftermarket industry, where the broad
range of products sold (from consumer electronics to pistons and everything between) combine with
stringent certifications of fitment and detail to create massive catalogs of data that must be updated
regularly. A medium-sized aftermarket supplier will have tens of thousands of SKUs, hundreds of
thousands of pictures, and millions of rows of fitment data to communicate to dozens of receivers
monthly. To complicate matters further, no unambiguous standard for partial data delivery exists,
meaning all of this data has to be sent in full to propagate even a single change.

Yet while this project began in the automotive world, the problem is one that extends to all product
data, regardless of industry; though various industry- and partner-specific standards and formats exist
to describe products, there’s no standard way to actually send them, to change just one piece of one
product’s data, or to make sure that what was sent actually covers what was requested. This applies
as much to T-shirts as it does to spark plugs.

We believe the Sandpiper framework can make this process a little less painful for everyone who has
to get information about their products into the world.

Basic Terms



Before we go further, there are a few basic terms to introduce, since they’re used so often. For more
detailed explanations, you can refer to the later parts of the document.

In Sandpiper, individuals or individual systems involved in exchanging and hosting data are known as
Nodes. When they’re part of a data exchange, called a Transaction, these nodes are known as Actors.

Actors exchange data about Products. Products (or SKUs, units, items, parts, and so on) are usually
goods – though they can also be services. Sandpiper specializes in the core data that defines these
products, which we call Product Data: information that, were it to change, would also mean the product
or its use itself had changed.

The framework does not make special accommodations for other kinds of data, which we call Non-
Product Data, even when it is product adjacent.

Data & Object Models

Products & Product Data

Products

Products are controlled by a Creator, the manufacturer or provider with ultimate authority over its form

and availability. A product has a single Part Number that is unique among all its creator’s products[1].

Product Data

Sandpiper’s focus is product data, which has two primary characteristics:

1. It defines the product, such that changing existing product data (except as a correction or
addition) usually means a material change to the product itself

2. It is nearly stateless, in that it changes infrequently, is not time-sensitive, and is not context-
sensitive

To give an example of the first primary characteristic of product data, if a sprocket has five teeth when
first communicated, that could not be changed to six teeth in a second communication without raising
an eyebrow; if the part truly changed from five to six teeth, it’s been fundamentally altered and will not
function the same way. It really is a new product, even if it supersedes the old for some reason. While
Sandpiper doesn’t prohibit any changes, making functional modifications like this without introducing a
new number is at best ill-advised.

To illustrate the second primary characteristic of product data, if the same sprocket is communicated at
the same time to Customer A and Customer B, they will both see the same number of teeth. Product



data is the same at any given point in time for any customer or relationship[2].

Some examples of product data:

Fitment information
Physical characteristics like weight, dimensions, etc.
Pictures of the product that convey its characteristics
Product contents list
Permanent marketing copy (i.e. not campaign copy and the like)
Universal retail price

Non-Product Data

Sandpiper doesn’t forbid the transmission of other types of data (particularly since there’s so much
grey area), but doesn’t make any provisions for it.

In contrast to product data, other kinds of data tend to change quickly, or are only valid within a given
time or context; they are stateful and reference rather than define products. This includes the data that
records and enables purchasing between entities as well as that which describes the current status of
products within a supply chain.

Some examples of non-product data:

Per-customer pricing
Market campaign copy
Purchase orders
Inventory reports

Grey Areas

In some scenarios, product data begins to approach non-product data, particularly when dealing with
non-critical attributes. For example, for purely functional products like oil seals, the color is most likely
not critical to the part’s function, and sometimes this changes frequently. To remain flexible in these
cases, Sandpiper doesn’t enforce true statelessness of the product itself, only of the data at any given
point in time.

As far as Sandpiper is concerned, a change to any product data creates a new state or revision of that
product’s data, rather than creating a new product. The creator and part number are the only elements
that can’t change without the product being considered new.

Data Synchronization



Sandpiper achieves its goal of reproducible, atomic data synchronization by strictly defining updates
as either full replacements of all known data within a well-described set, or as additions and deletions
of individual records within those sets using universally unique IDs (UUIDs).

Full Replacements

One way to assure reproducibility is by simply replacing all of one type of data in one go, for example,
all fitment data for water pumps. The sender provides a complete universe, and the receiver is
expected to more or less remove their old data and replace it with the new.

This does not provide a reliable way to update data in smaller pieces, and the scale of these updates
becomes so large that it’s not practical to do so more frequently than once a day at the most. For very
large sets this can even be quarterly or yearly.

Full replacements also need to specify and match their scopes carefully; if the receiver’s
understanding of what they should delete is broader than what they receive, they’ll drop data that will
not be replaced.

Sandpiper’s full replacement model can only be used in Level 1.

Partial Changes

Partial changes in theory allow for high-frequency updates, pinpoint corrections, and easy expansions
of data. Existing ways to do this, however, fail to meet Sandpiper’s synchronization goal in two major
areas: fragility of methods and uncertainty of state across systems. To address these two areas
Sandpiper uses UUIDs representing unchanging data records that can only be deleted or added.

Within a set, the individual records within a pool are immutable, i.e. once defined, they cannot be
changed. Thus a unique ID will always refer to both the same values and the actual data record
containing them. In this way sets of data can be mathematically compared and resolved, and the end
state of a second dataset will always provably match the state of the first.

Sandpiper’s partial change model can only be used in Level 2 and higher.

Why not “Delete/Update/Add”?

Adding information to an existing dataset is well understood; the new data augments the old, and no
modifications to existing data are required.

Removing information is a little more complicated because to do so the remover needs to specify
exactly what existing data needs to be deleted, as well as what to do when there are multiple records
sharing that same specification. Whole chains of validation exist today to attempt to resolve these



deletes based on values, and missing values or things like different character encodings create huge
headaches.

Updating information is even more complicated. On top of all the same requirements that would be
present for a delete, replacement values must also be provided, and then subjected to the same
validation as adding new information. Without doing this, values within a record could be updated to
create overlaps and violate domain rules. After the fact, there’s also no way to know if a record has
been changed without comparing all of its values to the previous record – which may have changed
itself. So clearly when processing updates as field-level changes in product data, there’s no way to
know the exact state of any dataset without examining all of the dataset.

Therefore a record update in a dataset is actually at least as difficult to orchestrate as a delete and an
add, but without any of the certainty.

For these reasons Sandpiper avoids updates except as a concept, and actually treats changes as
deletions and additions. UUIDs within a set cannot be reused even when a record is identical in form,
however, because the ID itself also represents the time and metadata of the original.

Object Model
The object model for Sandpiper defines a set
of common abstractions for the product data
each node stores. There are just four
persistent objects (Node, Pool, Slice, and
Grain) and two reference objects (Link and
Subscription). All Sandpiper objects have a
universally unique ID that will be used for
actions exclusively whenever possible.

The node represents the root of one self-
contained Sandpiper environment, with one
controller. It contains pools of product data,
each with one owner. These pools are further
subdivided into slices, each representing one
set of the same type of data and specifying
how it is internally organized. That data is
finally broken into grains by the method of organization named on the slice.

To structure this data and aid the creation of shared scope between actors, the persistent object types
can employ links: references to additional systems, descriptions, and data. To create the bond
between actors, the secondary actor establishes subscriptions to the slices available.



Persistent Objects

Nodes

The node is a single Sandpiper instance or system[3]. It has a Controller responsible for, though not
necessarily the originator of, its operation and contents.

Note: a human interacting at Level 1-1 is technically a node, though their data state is unknown after
retrieval.

Pools

Within each Sandpiper node, product data is stored in broad banks called Pools. These represent a
business or management-level division, so that a single node might contain product data spanning
multiple business approaches yet being coordinated within one system.

While a node has a controller, a pool has a Creator, the owner of the product data within. In some
cases this will be the same as the controller, and in others it will be different. For example, if the node
operator works for a shared services provider that offers data synchronization for multiple customers,
the controller will be the provider, and the creator will be the customer.

Pools can be one of two types: Canonical or Snapshot.

A node’s canonical pools contain the data that it owns and controls; changes made to a local node’s
canonical pools can be transferred to external Sandpiper nodes, with the local node as the origin point.

A node’s snapshot pools contain copies of the data in other nodes’ canonical pools transferred in this
way. A snapshot pool is just that: a snapshot of some or all of the data in a canonical pool from an
external node, at its last-known state.

Slices

A pool is divided into Slices. The slice is the fundamental unit of Sandpiper; basic transactions are
expected to operate only on the slice, and it provides the context for all more complex transactions as
well. It can be thought of as the file level of the data.

A slice defines the single type, format, and version of the data it contains (e.g. “Fitment”, “ACES XML”,
“3.0”). It also defines a URI to access the data, a filename for Level 1 transactions, and a slice type
that indicates how the file is granulated.

Grains

A slice is broken into Grains, each representing one unit of meaning or scope. It can be thought of as
the element level of the data.



Grains have a Grain Key containing a single text value,
to safely and atomically operate on the data in pieces
smaller than a whole slice. This value must be a single
unicode key that directly references one key value within
the data, e.g. a part number or a UUID. It must not be an
artificially packed or delimited set of values referring to
more than one key within the data.

The grain is the smallest unit on which a Sandpiper node
can act, and can only be directly addressed in Level 2
and higher transactions.

Reference Objects

Links

Links are references that allow slices to be tied to other systems and tagged with nonstandard
metadata.

The link is the primary means of attaching overarching structure to slice data. Every partnership will
have a different preferred method for establishing things like line codes, hierarchies, and sets, so the
link provides a few standard methods to do this and an extensible category for what it doesn’t define.

The link is also the way Sandpiper connects slice data to description or validation frameworks like
reference database versions, business identities, and so on.

Subscriptions

The secondary actor in a Sandpiper relationship can subscribe to a slice, stating its intention to mirror
that data and keep it synchronized with the primary actor.

This subscription includes the secondary actor’s stated preference for receipt of the data, particularly
the frequency of synchronization. In future versions, this may also include whether it should be pushed
or pulled, what methods should be employed, what schedule should be followed, and what credentials
will be used.

Interaction Model
Sandpiper’s main goal is to facilitate repeatable, deterministic data transfer, and to do this it lays out a
model for node interaction.



1. A system or human connecting to another through Sandpiper is known as an Actor.
2. Any information transfer between actors is known as an Exchange.
3. Exchanges are established and next steps are unlocked through Negotiation.
4. Transferring product data and resolving pools as part of an exchange is known as

Synchronization.
5. Two Actors’ operations and communications during synchronization are part of a single

Transaction.
6. After synchronization, actors communicate about the data exchanged and sign off on the results

during Confirmation.

Data transfer is only one-way: in any transaction only one actor will receive product data.

Actors
In the context of a transaction, nodes, humans, and systems assume a role as an actor. Any
transaction has only two actors: a Primary Actor and a Secondary Actor.

The primary actor is the sender of data, responsible for providing information about and issuing
updates from its canonical pools.

The secondary actor is the recipient of data. This actor can be a human or a full Sandpiper node. The
former is known as Basic Secondary Actors, because it cannot engage in a true Sandpiper exchange,
and the latter are known as Advanced Secondary Actors. Advanced secondary actors are responsible
for providing information about their snapshot pools as well as processing updates provided by the
primary actor.

The Plan
The Plan is the foundational document that establishes the actors involved, the types and shapes of
data available, and how the actors are able to proceed.

Levels



Sandpiper defines common minimum thresholds of capability for systems, so that simple needs can be
met easily by basic implementations, and advanced needs can be met with more advanced
implementations. In Sandpiper, these capabilities are grouped into Levels, with the lower levels having
less functionality and the higher more.

Higher levels inherit the capabilities of the lower levels, and are aware of the elements defined in
them. However, to maintain sanity, they cannot normally modify the data of lower levels; as the
interaction proceeds, Sandpiper conceptually steps up and down the levels, so that a Level 1
interaction is the first initiated.

Some levels may have sub-levels; these will be written in the format L-n, where L is the level and n is
the sub-level. For example, Level 1-1.

Level 0

Though not actually actionable within Sandpiper, the
framework defines a prototypical Level 0 to represent
uncontrolled product data exchange. Level 0 represents
human-to-human interaction where actual files are sent
between humans operating computers, who make
agreements between themselves about how these files
should be processed, their scope, and so on.

The only mechanism for this exchange is human-to-
human.

Level 1

Level 1 is the first and simplest method of communicating product data. Information is exchanged in
complete collections as files, which must replace all of the data stored at the recipient.

Level 1 is equivalent to sending full files between partners manually, but with the benefits of the
Sandpiper framework’s metadata, automation and validation.

This level is periodic and delivery-based. It has two sub-levels to serve either human-machine or
machine-machine interaction; this must be chosen during negotiation.

Level 1-1: Basic Exchange

A Level 1-1 basic exchange begins with the plan but never proceeds into synchronization; it allows a
human to connect to a machine, complete the plan, and retrieve full files. Currently the only supported
method for Level 1-1 is a human connecting to a Sandpiper server’s web UI as a data portal.



Level 1-2: Advanced Exchange

Level 1-2 advanced exchanges can only occur between
two Sandpiper nodes, machine-to-machine. They do not
not use portal-driven delivery; rather, nodes transfer files
directly between nodes using the Sandpiper transport.

Level 1 Negotiation

To start, in Level 1, nodes declare themselves, define
their capabilities, and agree on their actions. The chief
mechanism for this definition is the plan, as an XML file
passed back and forth, with the actors filling in their
proposed states and accepting or rejecting the changes.

All subscriptions occur at the slice, using its unique ID. It
is not possible to retrieve data at any higher or lower
position in the object model at Level 1; for that, Level 2
and beyond must be engaged.

A secondary actor cannot subscribe to or see snapshot pools held by the primary actor.

Level 1 Delivery

Through its subscriptions, the secondary actor indicates its preference for delivery of files containing
all the data contained in one or more slices within the primary actor’s canonical pools. It will receive or
retrieve this data on a set schedule and via methods both defined in the plan.

Level 1 Integration

The secondary actor’s node must archive or delete all previous data associated with the unique ID of
the slices it received, replacing it in full with the new data received.

Level 2

Level 2 provides the ability to use an interface-driven
mode where data may be modified in more targeted
pieces, still in the periodic subscription paradigm but at a
lower level.

The primary means of this interaction is via the
Sandpiper protocol. This and further interactions must be
performed machine-to-machine.



Level 2 will be defined in more detail as part of Sandpiper 1.0.

Level 3

Level 3 opens realtime communication of changes via a push mechanism.

Level 3 is not currently defined in detail; it will be part of Sandpiper 2.0.

Implementation
The Sandpiper server is focused on delivery and receipt of data to preserve one source for the
unambiguous truth around what is available for use. It is both a repository for the product data and a
mechanism for resolving differences between multiple repositories.

Because this is its focus, the server does not attempt to parse or understand the data it contains – only
its state. This means that the server itself will not be able to perform the rendering process to create

grains.[4]

For Level 1, which operates at the slice only, this makes no difference; the grain is never engaged. For
Level 2 and higher, though, Sandpiper exposes commands to input grains, allowing external
toolchains (for short, called Granulators) to parse full data into grains.

In these sections, we’ll refer to the source of the original data as the PIM: the Product Information

Manager.[5] The Sandpiper framework classifies PIMs in three tiers:

Tier Description

Classic
Output of single files that are communicated traditionally via email, FTP, or web
portal

Sandpiper-
Aware

Can execute Sandpiper commands and supporting tools externally, though not
query the data or use the API directly

Sandpiper-
Capable

Can transfer information directly into a Sandpiper server and query the data to
make intelligent decisions about updates

Granulation
Slices have one type of grain that they contain; either “full-file” to mean that it is a Level 1 full file slice,
or another value that indicates the type of grains it contains.



Once a full file slice has been created,
additional slices can be added to contain
different granulations of that data. These are
connected to the main slice using a Master
Link, a standard link object in the plan that
specifies the system “Master” and keys to the
slice ID of the full file.

In this way, a file with multiple segments can
be broken out for processing at Level 2. An
Auto Care PIES file, for example, contains
segments that are very differently structured;
the Items segment contains repeating Item
elements containing the bulk of the product
information, but the PriceSheets segment
contains repeating PriceSheet elements that
include pricing-specific information. The full file would be one slice with slice type “file”, and two
additional slices of slice type “pies-pricesheet” and “pies-item”.

Input Workflow
The capabilities of the data source will direct the workflow that’s most efficient. Classic PIMs require
some user intervention, and more modern PIMs reduce that need.

Classic PIM Input

Level 1, being file-based, is designed for classic PIMs that can’t use or haven’t yet been adapted to
use the Sandpiper framework. The PIM outputs files, and the user loads them into the Sandpiper
server using the commandline interface.



Level 2 introduces the ability to split complete datasets into grains. The server itself does not attempt
to parse or interpret data, yet classic PIMs have no internal capacity to do this. Sandpiper is designed
to support this scenario but to do so it will need an external, domain-specific tool to do so (called a
Granulator.)

Sandpiper-Aware PIM Input

Sandpiper-Aware PIMs are able to use Sandpiper commands to do basic import and launch other
tools. This may take the onus off of the user to manually import the data, though the process is likely
only semi-automated.

Sandpiper-Capable PIM Input



Sandpiper-Capable PIMs can communicate directly with the Sandpiper server, so for day-to-day
operations the user does not need to engage any external tools while updating data.

Output Workflow
As with input, the capabilities of the PIM receiver will direct the most efficient workflow.

Classic PIM Output

The classic PIM, without additional development, can make use of a purely Level 1 output process.
The Sandpiper server, after synchronization with the primary Sandpiper node, outputs files via the CLI.
The PIM then imports these using established processes.

With an integration process, a classic PIM can also use the results of Level 2 transactions. More
advanced recipients often already have a process to do something similar (for example, by comparing
existing files to data in the PIM). Using the Sandpiper API and/or CLI, an external migration program
can offload this change comparison to the deterministic Sandpiper framework, yet feed the PIM in the
way it’s already operating.

Sandpiper-Aware PIM Output



Sandpiper-Aware PIMs may not directly integrate Sandpiper into their logic, but can trigger regular
loads and audits using external commands.

Sandpiper-Capable PIM Output

Sandpiper-Capable PIMs speak directly to the Sandpiper server via the API, integrating the functions
so that no external tooling or user intervention is required.

Tips and Best Practices

UUIDs

IDs in Sandpiper are Universally Unique IDentifiers (UUIDs)[6].

Ensuring Uniqueness

A UUID should by its nature be unique across all nodes and all objects ever created; the odds are
astronomically small that any overlap can occur (in more than 100 trillion UUIDs, the odds of any
duplication are one in a billion).

However, unlikely does not mean impossible. Sandpiper implementations need to check these UUIDs
when acting on data, and raise a fatal error if one is found. As each controller has a UUID, and each
slice has a UUID, and the number of these will be small, a good first step is to check during the
initialization phase against the node’s already known IDs.



When receiving data, a similar check should be made against existing UUIDs tied to other data.
Depending on the implementation’s database schema, this would need to happen before automatically
processing deletes, and constraints should be in place to ensure uniqueness of UUIDs so that
overlapping additions can’t be made.

Data Integrations

Pool Hygiene

Remember that the canonical pool is the internal data owned and controlled by a node, and the
snapshot pools are the last-known state of other nodes’ owned data. These are separate for a reason:
the moment you integrate data, you change it in some way, even if all you’re changing is the owner ID.

These snapshot pools are your system’s way to make decisions about the state of external data
outside your control. You can use that data to change your own, but that data is never the state of your
data.

The canonical pools in a node must never directly accept data from another node. Resist the
temptation to simplify maintenance by combining these pools behind the scenes.

Instead, the data received from another node should be integrated into your own data using a
migration routine. This way you will identify many potential conflicts.

Staging Updates for Atomicity

Sometimes in the middle of an update systems will fail. At the least it’s possible that a sudden
hardware server fault could cause the machine to halt in the middle of a change.

Database servers have several ways to guarantee that these updates can be rolled back and re-
applied. However, their methods may still leave a pool in an unknown state if the Sandpiper
implementation doesn’t properly use them.

Each Sandpiper transaction should be treated as an indivisible update; if one part of it fails, the whole
thing should be rolled back. Properly boxing these updates can be done using SQL TRANSACTION
statements, but as integration grows and crosses environments, it may not be enough. In these cases,
instead of operating directly on the current tables, it makes sense to operate on copies of the data in
staging tables. Once the transaction is complete, the tables can be swapped atomically. Another
benefit of this is that indexes can be dropped and added on the staging table as needed for
performance.

Glossary



Actor
A node, system, or human taking part in an exchange. Can be either primary or secondary

Advanced Secondary Actor
A Sandpiper node that can engage in a full exchange

Basic Secondary Actor
A human actor that can only retrieve or receive data as files

Canonical Pool
The data that an individual node owns

Confirmation
Interaction model step. In this step actors agree on the results of an exchange

Controller
The owner and operator of a node

Creator
The owner and/or originator of a product

Data Object
An individual item being acted on in a Level 2 transaction

Exchange
Interaction model. Information transfer between actors

Full Replacement
Scoped data that replaces all data previously held within the same scope. In Sandpiper this
happens at the slice level

Grain
An addressable and self-contained unit within the slice

Grain Key
A reference to a single key value that can be used by Sandpiper to operate on data on a
grain-by-grain basis

Granulator
External tool that parses data stored in full Sandpiper slices and extracts grains into
associated granular slices

Level



A specified amount of capability for a Sandpiper interaction. Lower levels are less capable
and higher levels are more capable

Link
A reference object used by persistent objects to contain multiple relationships and
categorization points

Negotiation
Interaction model. Step in which actors establish an exchange and agree to its terms

Node
An individual Sandpiper instance. A human interacting at Level 1-1 technically counts as a
node, even if the instance itself is only conceptual (not backed by actual pools of data that
can be queried)

Non-Product Data
Information about products that does not define the fundamental nature of a product or its
use

PIM
Product Information Manager, used as a shorthand for the original source system of product
data

Pool
The first division of data within a node, providing owner-level segmentation. There are two
types, Canonical and Snapshot.

Primary Actor
The node in a transaction sending data, responsible for providing information about and
issuing updates from its canonical pools

Product
A single good or service, owned by a creator, with a unique part number

Product Data
The core data that defines a product or its use

Secondary Actor
The human, file server, or node in a transaction the receiving data, responsible for providing
information about its snapshot pools and processing updates provided by the primary actor

Slice



The subdivision of a Pool and the primary point of connection for Sandpiper exchanges. The
slice is the point at which filenames are defined and subscriptions are established

Snapshot Pool
A set of data mirroring the canonical pool from another node, taken at a given point in time

Subscription
A link object allowing a secondary node to subscribe to data changes in a primary node slice

Synchronization
Interaction model step. Transferring product data and resolving pools as part of an
exchange between two actors

Transaction
Interaction model. Operations on and communication about data between two actors during
synchronization

1. In the real world, part numbers can and do overlap between manufacturers. However, only in the
case of poorly controlled and structured business data does this happen within the same
manufacturer. In Sandpiper, the singular part number per creator is a pivotal point and thus
required. ↩ 

2. Some exception may be made for varying "flavors" of things like market copy, usage notes, and
so on, but this creates an element of uncertainty that probably discounts these elements from use
as anchor points within Sandpiper ↩ 

3. While a server might run multiple concurrent copies of the Sandpiper software and thus represent
multiple nodes, for simplicity we just refer to the node as a system, as this is the most common
use case. ↩ 

4. Splitting an XML file into grains, for example, is highly domain-specific, depending on its format,
version, and content. Attempting to natively decode and securely implement this conversion would
lead to unacceptable code and scope bloat in an otherwise tightly-specified program. ↩ 

5. The word "PIM" is ambiguous; it could mean a single program that handles all product
information, a combination of systems, or just a human being handling spreadsheets. We use it
here as a convenient catch-all term. ↩ 

6. See Wikipedia's entry for more details. Sandpiper specifies version 4 of RFC4122, which
describes creating a UUID using a random number ↩ 

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://tools.ietf.org/html/rfc4122#section-4.4

